Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.162
Filtrar
2.
Arq. Ciênc. Vet. Zool. UNIPAR (Online) ; 26(1cont): 313-323, jan.-jun. 2023. ilus, tab
Artigo em Português | LILACS, VETINDEX | ID: biblio-1517897

RESUMO

O presente estudo teve como objetivo avaliar e desenvolver uma nova tecnologia para agricultura familiar, que integre a olericultura com a criação de pintados em tanques elevados de geomembrana com recirculação de água. Para tanto, foram distribuídos aleatoriamente 240 peixes com peso médio de 10,67g em um tanque de geomembrana com capacidade de 30 m3 de água. A qualidade da água foi monitorada analisando as variáveis temperatura da água por meio de um termômetro, oxigênio dissolvido, pH, alcalinidade, nitrito e amônia por meio de kits colorimétricos. O arraçoamento foi realizado duas vezes ao dia às 07h00min e 19h00min com ração extrusada contendo 32% de proteína bruta, durante um período de 204 dias. Mensalmente foram realizadas biometrias para corrigir o arraçoamento, analisar o peso total médio, comprimento total médio, ganho de peso e conversão alimentar. A qualidade da água durante o período experimental não apresentou níveis críticos para a produção dos peixes e no final dos 204 dias de criação os peixes apresentaram peso final médio de 719,4g, comprimento final médio de 48,5cm, ganho de peso final médio de 708,5g e conversão alimentar média de 1,59. Quanto à produtividade das olerícolas, constatou-se que a água do efluente do sistema de criação forneceu quantidades adequadas de nutrientes necessários ao desenvolvimento das plantas. Os resultados indicam que o pintado tem potencial para ser criado em tanques elevados de geomembrana com sistema de recirculação de água e o efluente do sistema pode ser utilizado como uma alternativa para a produção integrada de peixes e olerícolas.(AU)


The present study aimed to evaluate and develop a new technology for family farming, which integrates vegetable farming with the creation of guinea fowl in elevated geomembrane tanks with water recirculation. To this end, 240 fish with an average weight of 10.67g were randomly distributed in a geomembrane tank with a capacity of 30 m3 of water. Water quality was monitored by analyzing the variables water temperature using a thermometer, dissolved oxygen, pH, alkalinity, nitrite and ammonia using colorimetric kits. Feeding was carried out twice a day at 7:00 am and 7:00 pm with extruded feed containing 32% crude protein, over a period of 204 days. Biometrics were carried out monthly to correct the diet, analyze the average total weight, average total length, weight gain and feed conversion. The water quality during the experimental period did not present critical levels for fish production and at the end of the 204 days of creation the fish had an average final weight of 719.4g, average final length of 48.5cm, average final weight gain of 708.5g and average feed conversion of 1.59. Regarding the productivity of the olerícolas, it was found that the effluent water of the rearing system provided adequate amounts of nutrients necessary for the development of the plants. The results indicate that the pintado has the potential to be created in elevated geomembrane tanks with water recirculation system and the effluent of the system can be used as an alternative for the integrated production of fish and olerícolas.(AU)


El presente estudio tuvo como objetivo evaluar y desarrollar una nueva tecnología para la agricultura familiar, que integra la olericultura con la creación de pintados en tanques elevados de geomembrana con recirculación de agua. Con este fin, 240 peces con un peso promedio de 10.67g se distribuyeron aleatoriamente en un tanque de geomembrana con una capacidad de 30 m3 de agua. La calidad del agua fue monitoreada mediante el análisis de las variables temperatura del agua por medio de un termómetro, oxígeno disuelto, pH, alcalinidad, nitrito y amoníaco por medio de kits colorimétricos. La alimentación se realizó dos veces al día a las 07:00 y 19:00 con alimento extruido que contenía 32% de proteína cruda, durante un período de 204 días. La biometría se realizó mensualmente para corregir la alimentación, analizar el peso total promedio, la longitud total media, el aumento de peso y la conversión alimenticia. La calidad del agua durante el período experimental no presentó niveles críticos para la producción de peces y al final de los 204 días de cría los peces presentaron un peso final promedio de 719.4g, una longitud final promedio de 48.5cm, una ganancia de peso final promedio de 708.5g y una conversión alimenticia promedio de 1.59. En cuanto a la productividad de las olerícolas, se encontró que el agua efluente del sistema de cría proporcionó cantidades adecuadas de nutrientes necesarios para el desarrollo de las plantas. Los resultados indican que el pintado tiene el potencial de ser creado en tanques elevados de geomembrana con sistema de recirculación de agua y el efluente del sistema puede ser utilizado como una alternativa para la producción integrada de peces y olerícolas.(AU)


Assuntos
Animais , Peixes-Gato/fisiologia , Agricultura/tendências , Peixes/crescimento & desenvolvimento , Tecnologia/tendências , Pesqueiros , Fabaceae/crescimento & desenvolvimento
3.
Braz. j. biol ; 83: 1-13, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468809

RESUMO

Interactions between endophytic fungi (EFs) and their host plants range from positive to neutral to negative. The results of such interactions can vary depending on the organ of the infected host plant. EFs isolated from the leaves of some species of plants have potential for use as agents to inhibit seed germination and control invasive plants. The objectives of this study were to identify EFs present in the leaves of Copaifera oblongifolia and to evaluate the role of these fungi in seed germination and seedling development. A total of 11 species of EFs were isolated, which were identified using the internal transcribed spacers (ITS) sequence of the nuclear ribosomal DNA. The isolated species of EFs are generalists and probably are transmitted horizontally. Laboratory tests revealed that filtrates of these fungal isolates differently affect seed germination and seedling development of C. oblongifolia. The species Curvularia intermedia, Neofusicoccum parvum, Pseudofusicoccum stromaticum and Phomopsis sp. negatively affected seed germination, with N. parvum standing out for its negative effects, inhibiting seedling germination and survival in 89 and 222%, respectively. In addition, Cochliobolus intermedius negatively affected seedling development. Thus, the combined use of N. parvum and C. intermedius, or products from the metabolism of these microorganisms, in the control of invasive plants deserves attention from future studies.


As interações entre fungos endofíticos (FEs) e suas plantas hospedeiras variam de positivas, neutras a negativas. Os resultados destas interações podem variar dependendo do órgão da planta hospedeira infectada. FEs isolados de folhas de algumas espécies de plantas têm potencial para serem usados como agentes inibidores da germinação de sementes e no controle de plantas invasoras. Os objetivos deste estudo foram identificar os FEs presentes nas folhas de Copaifera oblongifolia e avaliar o papel destes fungos na germinação das sementes e no desenvolvimento das plântulas. Um total de 11 espécies de FEs foi isolado das folhas de C. oblongifolia e identificado através da sequência dos espaçadores internos transcritos do DNA ribossomal nuclear. As espécies de FEs isoladas são generalistas e provavelmente devem ser transmitidas horizontalmente. Os resultados dos testes de germinação mostraram que filtrados destes isolados fúngicos podem afetar diferentemente a germinação das sementes e o desenvolvimento das plântulas de C. oblongifolia. As espécies Curvularia intermedia, Neofusicoccum parvum, Pseudofusicoccum stromaticum e Phomopsis sp. afetaram negativamente a germinação das sementes de C. oblongifolia. Dentre estas espécies devemos destacar que N. parvum reduziu a germinação e a sobrevivência das plântulas em 89 e 222%, respectivamente. Além disso, Cochiliobolus intermedius afetou negativamente o desenvolvimento das plântulas. Assim, o uso combinado de N. parvum e C. intermedius, ou de produtos do metabolismo destas espécies de fungos, têm potencial para serem usados no manejo de plantas invasoras.


Assuntos
Animais , DNA Ribossômico/análise , Fabaceae/crescimento & desenvolvimento , Fungos/patogenicidade , Germinação , Interações entre Hospedeiro e Microrganismos , Plântula/crescimento & desenvolvimento
4.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163967

RESUMO

This study was planned to explore the locally available natural sources of gum hydrocolloids as a natural modifier of different starch properties. Corn (CS), sweet potato (SPS), and Turkish bean (TBS) starches were mixed with locally extracted native or acetylated cactus (CG) and acacia (AG) gums at 2 and 5% replacement levels. The binary mixtures (starch-gums) were prepared in water, freeze dried, ground to powder, and stored airtight. A rapid viscoanalyzer (RVA), differential scanning calorimeter (DSC), texture analyzer, and dynamic rheometer were used to explore their pasting, thermal, textural, and rheological properties. The presence of acetylated AG or CG increased the final viscosity (FV) in all three starches when compared to starch pastes containing native gums. Plain SPS dispersion had a higher pasting temperature (PT) than CS and TBS. The addition of AG or CG increased the PT of CS, SPS, and TBS. The thermograms revealed the overall enthalpy change of the starch and gum blends: TBS > SPS > CS. The peak temperature (Tp) of starches increased with increasing gum concentration from 2 to 5% for both AG and CG native and modified gums. When compared to the control gels, the addition of 2% CG, either native or modified, reduced the syneresis of starch gels. However, further addition (5% CG) increased the gels' syneresis. Furthermore, the syneresis for the first cycle on the fourth day was higher than the second cycle on the eighth day for all starches. The addition of native and acetylated CG reduced the hardness of starch gels at all concentrations tested. All of the starch dispersions had higher G' than G″ values, indicating that they were more elastic and less viscous with or without the gums. The apparent viscosity of all starch gels decreased as shear was increased, with profiles indicating time-dependent thixotropic behavior. All of the starch gels, with or without gums, showed a non-Newtonian shear thinning trend in the shear stress vs. shear rate graphs. The addition of acetylated CG gum to CS resulted in a higher activation energy (Ea) than the native counterparts and the control. More specifically, starch gels with a higher gum concentration (5%) provided greater Ea than their native counterparts.


Assuntos
Fabaceae/metabolismo , Ipomoea batatas/metabolismo , Zea mays/metabolismo , Acacia , Coloides , Fabaceae/crescimento & desenvolvimento , Goma Arábica/metabolismo , Ipomoea batatas/crescimento & desenvolvimento , Opuntia/metabolismo , Gomas Vegetais , Reologia/métodos , Arábia Saudita , Amido/metabolismo , Temperatura , Termodinâmica , Viscosidade , Zea mays/crescimento & desenvolvimento
5.
J Sci Food Agric ; 102(1): 156-166, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34080187

RESUMO

BACKGROUND: Cereal-legume intercropping systems are an environmentally friendly practice in sustainable agriculture. However, research on the interspecific interaction of nitrogen (N) between rice and aquatic legumes has rarely been undertaken. To address this issue, a pot experiment was conducted to investigate N utilization and the N interaction between rice and water mimosa (Neptunia oleracea Lour.) in an intercropping system. The root barrier patterns consisted of solid barrier (SB), mesh barrier (MB), and no barrier (NB) treatments. The N fertilizer application rates were low, medium, and high N rates. RESULTS: The results showed that the NB treatment better facilitated rice growth compared with the MB and SB treatments. And the nitrate N content and urease activity of rice rhizospheric soil in the NB treatment were the highest of the three separated patterns. The ammonium N content in water mimosa rhizospheric soil and N2 fixation of water mimosa ranked as NB > MB > SB. CONCLUSIONS: The amount of N fixation by water mimosa was 4.38-13.64 mg/pot, and the N transfer from water mimosa to rice was 3.97-9.54 mg/pot. This can promote the growth of rice and reduce the application of N fertilizer. We suggest that the rice-water mimosa intercropping system is a sustainable ecological farming approach and can be applied in the field to facilitate rice production. © 2021 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Fabaceae/metabolismo , Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Fabaceae/crescimento & desenvolvimento , Fertilizantes/análise , Nitratos/metabolismo , Fixação de Nitrogênio , Oryza/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Solo/química
6.
Braz. j. biol ; 82: 1-8, 2022. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468483

RESUMO

In the tropical region, savannas and seasonal forests, both highly diverse biomes, occur side by side, under the same climate. If so, that mosaic cannot be explained solely by climatic variables, but also by fire, water availability and soil status. Nutrient availability in the soil, especially nitrogen and phosphorus, has been postulated to explain the abrupt transitions between savannas and seasonal forests in tropical regions. Plants from these two biomes may present different nutritional strategies to cope with nitrogen and phosphorus limitation. We used two congeneric pairs of trees — each pair with a species from the savanna and another from the neighboring seasonal forest — to test whether savanna and forest species presented different nutritional strategies during their early development. We cultivated 56 individuals from each of these species in a hydroponics system with four treatments: (1) complete Hoagland solution, (2) Hoagland solution without nitrogen, (3) Hoagland solution without phosphorus, and (4) Hoagland solution without nitrogen and phosphorus. After 45 days, we harvested the plants and measured total biomass, root to shoot ratio, height, leaf area, and specific leaf area. Overall, savanna species were lighter, shorter, with smaller leaves, higher specific leaf areas, and higher root to shoot ratios when compared to the forest species. Nitrogen increased the performance of species from both biomes. Phosphorus improved the performance of the forest species and caused toxicity symptoms in the savanna species. Hence, savanna and forest species presented different demands and were partially distinct already as seedlings concerning their nutritional strategies.


Em regiões tropicais, savanas e florestas estacionais, biomas altamente diversos, ocorrem lado a lado, sob o mesmo clima. Sendo assim, esse mosaico não pode ser explicado somente por variáveis climáticas, devendo ser considerada a frequência e intensidade de incêndios, disponibilidade de água e status do solo. A disponibilidade de nutrientes no solo, especialmente nitrogênio e fósforo, tem sido postulada para explicar as transições abruptas entre savanas e florestas estacionais nos trópicos. Espécies vegetais desses dois biomas podem apresentar estratégias nutricionais diferentes para lidar com a limitação tanto de nitrogênio como de fósforo. Utilizamos dois pares de árvores congenéricas — cada par com uma espécie típica de savana e outra de floresta estacional vizinha — para testar se as espécies da savana e da floresta apresentaram estratégias nutricionais diferentes durante seu desenvolvimento inicial. Cultivamos 56 indivíduos de cada uma dessas espécies em um sistema hidropônico com quatro tratamentos: (1) solução Hoagland completa, (2) solução Hoagland sem nitrogênio, (3) solução Hoagland sem fósforo e (4) solução Hoagland sem nitrogênio e fósforo. Após 45 dias, colhemos as plantas e medimos a biomassa total, a relação raiz / parte aérea, altura, área foliar e área foliar específica. No geral, as espécies savânicas foram mais leves, menores em altura, área foliar e área foliar específica e apresentaram maiores razões entre biomassa radicular por biomassa aérea quando comparadas às espécies florestais. A oferta de nitrogênio aumentou o desempenho das espécies de ambos biomas. O fósforo melhorou o desempenho das espécies florestais e causou sintomas de toxicidade nas espécies savânicas. Concluímos que, já como mudas, espécies congenéricas de savana e floresta apresentaram demandas distintas e foram parcialmente diferentes em relação a suas estratégias nutricionais.


Assuntos
Características do Solo/análise , Floresta Úmida , Fósforo/administração & dosagem , Hidroponia , Nitrogênio/administração & dosagem , Pradaria , Química do Solo/análise , Fabaceae/crescimento & desenvolvimento , Fabaceae/efeitos dos fármacos , Solanum/crescimento & desenvolvimento , Solanum/efeitos dos fármacos
7.
Sci Rep ; 11(1): 22835, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819547

RESUMO

In the current study, an eco-friendly management technology to improve young carob (Ceratonia siliqua L.) tree tolerance to water deficit was set up by using single or combined treatments of arbuscular mycorrhizal fungi (AMF) and/or compost (C). Two groups of young carob have been installed: (i) carob cultivated under well-watered conditions (WW; 70% field capacity (FC)) and (ii) where the plants were drought-stressed (DS; 35% FC) during 2, 4, 6, and 8 months. The effect of used biofertilizers on the course of growth, physiological (photosynthetic traits, water status, osmolytes, and mineral content), and biochemical (hydrogen peroxide (H2O2), oxidative damage to lipids (malondialdehyde (MDA), and membrane stability (MS)) traits in response to short- and long-term droughts were assessed. The dual application of AMF and C (C + AMF) boosted growth, physiological and biochemical parameters, and nutrient uptake in carob under WW and DS. After eight months, C + AMF significantly enhanced stomatal conductance by 20%, maximum photochemical efficiency of PSII by 7%, leaf water potential by 23%, chlorophyll and carotenoid by 40%, plant uptake of mineral nutrients (P by 75%, N by 46%, K+ by 35%, and Ca2+ by 40%), concentrations of soluble sugar by 40%, and protein content by 44% than controls under DS conditions. Notably, C + AMF reduced the accumulation of H2O2 and MDA content to a greater degree and increased MS. In contrast, enzyme activities (superoxide dismutase, catalase, peroxidase, and polyphenoloxidase) significantly increased in C + AMF plants under DS. Overall, our findings suggest that the pairing of C + AMF can mediate superior drought tolerance in young carob trees by increasing leaf stomatal conductance, cellular water content, higher solute concentration, and defense response against oxidative damage during the prolonged period of DS.


Assuntos
Compostagem , Secas , Fabaceae/crescimento & desenvolvimento , Micorrizas/fisiologia , Agricultura Orgânica , Estresse Fisiológico , Árvores/crescimento & desenvolvimento , Antioxidantes/metabolismo , Fabaceae/metabolismo , Fabaceae/microbiologia , Estado de Hidratação do Organismo , Estresse Oxidativo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Simbiose , Árvores/metabolismo , Árvores/microbiologia , Água/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845020

RESUMO

Fertile soils have been an essential resource for humanity for 10,000 y, but the ecological mechanisms involved in the creation and restoration of fertile soils, and especially the role of plant diversity, are poorly understood. Here we use results of a long-term, unfertilized plant biodiversity experiment to determine whether biodiversity, especially plant functional biodiversity, impacted the regeneration of fertility on a degraded sandy soil. After 23 y, plots containing 16 perennial grassland plant species had, relative to monocultures of these same species, ∼30 to 90% greater increases in soil nitrogen, potassium, calcium, magnesium, cation exchange capacity, and carbon and had ∼150 to 370% greater amounts of N, K, Ca, and Mg in plant biomass. Our results suggest that biodiversity, likely in combination with the increased plant productivity caused by higher biodiversity, led to greater soil fertility. Moreover, plots with high plant functional diversity, those containing grasses, legumes, and forbs, accumulated significantly greater N, K, Ca, and Mg in the total nutrient pool (plant biomass and soil) than did plots containing just one of these three functional groups. Plant species in these functional groups had trade-offs between their tissue N content, tissue K content, and root mass, suggesting why species from all three functional groups were essential for regenerating soil fertility. Our findings suggest that efforts to regenerate soil C stores and soil fertility may be aided by creative uses of plant diversity.


Assuntos
Recuperação e Remediação Ambiental/métodos , Plantas/metabolismo , Solo/química , Biodiversidade , Biomassa , Carbono/metabolismo , Conservação dos Recursos Naturais/métodos , Ecossistema , Fabaceae/crescimento & desenvolvimento , Fertilidade/efeitos dos fármacos , Pradaria , Nitrogênio/análise , Nitrogênio/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Potássio/metabolismo , Microbiologia do Solo
9.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638885

RESUMO

Legumes are a better source of proteins and are richer in diverse micronutrients over the nutritional profile of widely consumed cereals. However, when exposed to a diverse range of abiotic stresses, their overall productivity and quality are hugely impacted. Our limited understanding of genetic determinants and novel variants associated with the abiotic stress response in food legume crops restricts its amelioration. Therefore, it is imperative to understand different molecular approaches in food legume crops that can be utilized in crop improvement programs to minimize the economic loss. 'Omics'-based molecular breeding provides better opportunities over conventional breeding for diversifying the natural germplasm together with improving yield and quality parameters. Due to molecular advancements, the technique is now equipped with novel 'omics' approaches such as ionomics, epigenomics, fluxomics, RNomics, glycomics, glycoproteomics, phosphoproteomics, lipidomics, regulomics, and secretomics. Pan-omics-which utilizes the molecular bases of the stress response to identify genes (genomics), mRNAs (transcriptomics), proteins (proteomics), and biomolecules (metabolomics) associated with stress regulation-has been widely used for abiotic stress amelioration in food legume crops. Integration of pan-omics with novel omics approaches will fast-track legume breeding programs. Moreover, artificial intelligence (AI)-based algorithms can be utilized for simulating crop yield under changing environments, which can help in predicting the genetic gain beforehand. Application of machine learning (ML) in quantitative trait loci (QTL) mining will further help in determining the genetic determinants of abiotic stress tolerance in pulses.


Assuntos
Inteligência Artificial , Produtos Agrícolas/genética , Fabaceae/genética , Genômica , Melhoramento Vegetal , Estresse Fisiológico/genética , Produtos Agrícolas/crescimento & desenvolvimento , Fabaceae/crescimento & desenvolvimento , Locos de Características Quantitativas
10.
BMC Plant Biol ; 21(1): 466, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645406

RESUMO

BACKGROUND: Phosphorus (P) is an essential macronutrient for plant growth that participates in a series of biological processes. Thus, P deficiency limits crop growth and yield. Although Stylosanthes guianensis (stylo) is an important tropical legume that displays adaptation to low phosphate (Pi) availability, its adaptive mechanisms remain largely unknown. RESULTS: In this study, differences in low-P stress tolerance were investigated using two stylo cultivars ('RY2' and 'RY5') that were grown in hydroponics. Results showed that cultivar RY2 was better adapted to Pi starvation than RY5, as reflected by lower values of relative decrease rates of growth parameters than RY5 at low-P stress, especially for the reduction of shoot and root dry weight. Furthermore, RY2 exhibited higher P acquisition efficiency than RY5 under the same P treatment, although P utilization efficiency was similar between the two cultivars. In addition, better root growth performance and higher leaf and root APase activities were observed with RY2 compared to RY5. Subsequent RNA-seq analysis revealed 8,348 genes that were differentially expressed under P deficient and sufficient conditions in RY2 roots, with many Pi starvation regulated genes associated with P metabolic process, protein modification process, transport and other metabolic processes. A group of differentially expressed genes (DEGs) involved in Pi uptake and Pi homeostasis were identified, such as genes encoding Pi transporter (PT), purple acid phosphatase (PAP), and multidrug and toxin extrusion (MATE). Furthermore, a variety of genes related to transcription factors and regulators involved in Pi signaling, including genes belonging to the PHOSPHATE STARVATION RESPONSE 1-like (PHR1), WRKY and the SYG1/PHO81/XPR1 (SPX) domain, were also regulated by P deficiency in stylo roots. CONCLUSIONS: This study reveals the possible mechanisms underlying the adaptation of stylo to P deficiency. The low-P tolerance in stylo is probably manifested through regulation of root growth, Pi acquisition and cellular Pi homeostasis as well as Pi signaling pathway. The identified genes involved in low-P tolerance can be potentially used to design the breeding strategy for developing P-efficient stylo cultivars to grow on acid soils in the tropics.


Assuntos
Adaptação Fisiológica/genética , Deficiências Nutricionais/genética , Fabaceae/crescimento & desenvolvimento , Fabaceae/genética , Fósforo/deficiência , Transcriptoma , China , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
11.
PLoS One ; 16(9): e0257053, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34587163

RESUMO

Due to increasing population growth and declining arable land on Earth, astroagriculture will be vital to terraform Martian regolith for settlement. Nodulating plants and their N-fixing symbionts may play a role in increasing Martian soil fertility. On Earth, clover (Melilotus officinalis) forms a symbiotic relationship with the N-fixing bacteria Sinorhizobium meliloti; clover has been previously grown in simulated regolith yet without bacterial inoculation. In this study, we inoculated clover with S. meliloti grown in potting soil and regolith to test the hypothesis that plants grown in regolith can form the same symbiotic associations as in soils and to determine if greater plant biomass occurs in the presence of S. meliloti regardless of growth media. We also examined soil NH4 concentrations to evaluate soil augmentation properties of nodulating plants and symbionts. Greater biomass occurred in inoculated compared to uninoculated groups; the inoculated average biomass in potting mix and regolith (2.23 and 0.29 g, respectively) was greater than the uninoculated group (0.11 and 0.01 g, respectively). However, no significant differences existed in NH4 composition between potting mix and regolith simulant. Linear regression analysis results showed that: i) symbiotic plant-bacteria relationships differed between regolith and potting mix, with plant biomass positively correlated to regolith-bacteria interactions; and, ii) NH4 production was limited to plant uptake yet the relationships in regolith and potting mix were similar. It is promising that plant-legume symbiosis is a possibility for Martian soil colonization.


Assuntos
Fabaceae/microbiologia , Marte , Nitrogênio/metabolismo , Sinorhizobium/fisiologia , Solo , Simbiose/fisiologia , Compostos de Amônio/análise , Biomassa , Fabaceae/anatomia & histologia , Fabaceae/crescimento & desenvolvimento , Modelos Lineares , Nodulação/fisiologia , Brotos de Planta/anatomia & histologia , Solo/química
12.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359842

RESUMO

Noncoding RNAs, including microRNAs (miRNAs), small interference RNAs (siRNAs), circular RNA (circRNA), and long noncoding RNAs (lncRNAs), control gene expression at the transcription, post-transcription, and translation levels. Apart from protein-coding genes, accumulating evidence supports ncRNAs playing a critical role in shaping plant growth and development and biotic and abiotic stress responses in various species, including legume crops. Noncoding RNAs (ncRNAs) interact with DNA, RNA, and proteins, modulating their target genes. However, the regulatory mechanisms controlling these cellular processes are not well understood. Here, we discuss the features of various ncRNAs, including their emerging role in contributing to biotic/abiotic stress response and plant growth and development, in addition to the molecular mechanisms involved, focusing on legume crops. Unravelling the underlying molecular mechanisms and functional implications of ncRNAs will enhance our understanding of the coordinated regulation of plant defences against various biotic and abiotic stresses and for key growth and development processes to better design various legume crops for global food security.


Assuntos
Fabaceae/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , RNA Circular/genética , RNA Longo não Codificante/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Fabaceae/crescimento & desenvolvimento , Fabaceae/metabolismo , Segurança Alimentar , Regulação da Expressão Gênica no Desenvolvimento , Humanos , MicroRNAs/classificação , MicroRNAs/metabolismo , Especificidade de Órgãos , Biossíntese de Proteínas , RNA Circular/classificação , RNA Circular/metabolismo , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , RNA de Plantas/classificação , RNA de Plantas/metabolismo , RNA Interferente Pequeno/classificação , RNA Interferente Pequeno/metabolismo , Especificidade da Espécie , Estresse Fisiológico/genética , Transcrição Gênica
13.
J Microbiol Biotechnol ; 31(10): 1373-1382, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34409947

RESUMO

Plant growth promoting rhizobacteria (PGPR) are a group of bacteria that can increase plant growth; but due to unfavorable environmental conditions, PGPR are biologically unstable and their survival rates in soil are limited. Therefore, the suitable application of PGPR as a plant growth stimulation is one of the significant challenges in agriculture. This study presents an intelligent formulation based on Bacillus velezensis VRU1 encapsulation enriched with nanoparticles that was able to control Rhizoctonia solani on the bean. The spherical structure of the capsule was observed based on the Scanning Electron Microscope image. Results indicated that with increasing gelatin concentration, the swelling ratio and moisture content were increased; and since the highest encapsulation efficiency and bacterial release were observed at a gelatin concentration of 1.5%, this concentration was considered in mixture with alginate for encapsulation. The application of this formulation which is based on encapsulation and nanotechnology appears to be a promising technique to deliver PGPR in soil and is more effective for plants.


Assuntos
Bacillus/fisiologia , Agentes de Controle Biológico , Fabaceae/microbiologia , Doenças das Plantas/prevenção & controle , Rhizoctonia/patogenicidade , Alginatos/química , Agentes de Controle Biológico/administração & dosagem , Fabaceae/crescimento & desenvolvimento , Gelatina/química , Nanopartículas/química , Doenças das Plantas/microbiologia , Microbiologia do Solo
14.
PLoS One ; 16(7): e0254584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34252159

RESUMO

Summer weed species, including Echinochloa colona, are becoming problematic in the eastern grain region of Australia, but cover crops can be useful to suppress weeds during the summer fallow period. The present study evaluated the growth and seed production of E. colona grown alone or with four and eight cover crop plants per pot (i.e., 80 and 160 plants m-2). Four legume (cowpea, lablab, pigeonpea, and soybean) and two grass (forage sorghum and Japanese millet) cover crops were used. Interference by cover crops reduced the height, the number of leaves and tillers, inflorescence number, seed production, and biomass of this weed than when it was grown alone. Cover crops differed in their ability to suppress the growth and seed production of E. colona. The effect of cover crop density on the studied attributes was non-significant in most cases. Pigeonpea as a cover crop was the least effective in suppressing the growth and seed production of E. colona. In general, leguminous cover crops exhibited less suppression of E. colona than grasses. Forage sorghum was most efficient in reducing the growth of this weed. Forage sorghum and Japanese millet reduced E. colona leaf and tiller numbers per plant by 90 and 87%, respectively. These cover crops reduced E. colona leaf number to only 17 per plant as against 160 per plant recorded without cover crops. Inflorescence number per E. colona plant growing alone was as high as 48. However, it was reduced by 20-92% when this weed was grown with cover crop plants. E. colona's seed production was significantly suppressed by all the cover crops, except pigeonpea. Biomass of E. colona was suppressed largely by forage sorghum and Japanese millet compared to other cover crops. Among the cover crops, pigeonpea produced the lowest biomass of 11 g pot-1, and the highest biomass (114 g pot-1) was produced by forage sorghum. The study demonstrated the usefulness of cover crops, especially forage sorghum and Japanese millet, to suppress the growth and seed output of E. colona.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Echinochloa/crescimento & desenvolvimento , Fabaceae/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento
15.
Plant Cell Environ ; 44(10): 3347-3357, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34327717

RESUMO

It has been suggested that a trade-off between hydraulic efficiency and safety is related to drought adaptation across species. However, whether leaf hydraulic efficiency is sacrificed for safety during woody resprout regrowth after crown removal is not well understood. We measured leaf water potential (ψleaf ) at predawn (ψpd ) and midday (ψmid ), leaf maximum hydraulic conductance (Kleaf-max ), ψleaf at induction 50% loss of Kleaf-max (Kleaf P50 ), leaf area-specific whole-plant hydraulic conductance (LSC), leaf vein structure and turgor loss point (πtlp ) in 1- to 13-year-old resprouts of the aridland shrub (Caragana korshinskii). ψpd was similar, ψmid and Kleaf P50 became more negative, and Kleaf-max decreased in resprouts with the increasing age; thus, leaf hydraulic efficiency clearly traded off against safety. The difference between ψmid and Kleaf P50 , leaf hydraulic safety margin, increased gradually with increasing resprout age. More negative ψmid and Kleaf P50 were closely related to decreasing LSC and more negative πtlp , respectively, and the decreasing Kleaf-max arose from the lower minor vein density and the narrower midrib xylem vessels. Our results showed that a clear trade-off between leaf hydraulic efficiency and safety helps C. korshinskii resprouts adapt to increasing water stress as they approach final size.


Assuntos
Fabaceae/fisiologia , Folhas de Planta/fisiologia , Água/metabolismo , Fenômenos Biomecânicos , Clima Desértico , Fabaceae/crescimento & desenvolvimento
16.
Sci Rep ; 11(1): 15360, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321544

RESUMO

The interest expressed by the agriculture in the category of innovative biostimulants is due to the intensive search for natural preparations. Our study is the first ever to report a complex approach to the use of allelopathic extracts from Levisticum officinale Koch. roots in soybean cultivation, includes analyses of morphological observations, and analyses of biochemical indicators. Hot method of aqueous extraction was applied. The extracts were administered via foliar application and soil treatment. Lovage extracts had high contents of polyphenolic compounds and rich micro- and macroelemental composition. The infusions did not contain gibberellic acid and indole-3-acetic acid but the abscisic acid and saccharose, glucose, and fructose were found. The extracts modified soybean plant physiology, as manifested by changes in biometric traits. Plants responded positively by increased yield. Seeds from the treated plants had higher contents of micro- and macroelements, as well as total concentrations of lipids (with a slight decrease in protein content). In addition, they featured changes in their amino acid profile and fatty acid composition. The application of allelopathic biostimulant caused increased concentrations of isoflavones and saponins. The natural biostimulants from Levisticum officinale may become a valuable tool in the sustainable agriculture.


Assuntos
/química , Levisticum/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Ácido Abscísico/química , Ácido Abscísico/farmacologia , Fabaceae/efeitos dos fármacos , Fabaceae/crescimento & desenvolvimento , Giberelinas/química , Glucose/química , Glucose/farmacologia , Levisticum/química , Levisticum/crescimento & desenvolvimento , Feromônios/química , Feromônios/farmacologia , Extratos Vegetais/química , Sementes/química , Sacarose/química , Sacarose/farmacologia , Água/química
17.
Int J Biol Macromol ; 182: 1893-1905, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34081953

RESUMO

In this work, a number of glucose unites in polymeric structure of cellulose was converted to 2,4-dihydroxy-3-(1-hydroxy-2-oxoethoxy)butanal (cellulose containing di aldehyde units (CCDAUs)) by oxidation with sodium periodate, followed by condensation with acetone to produce 5,7-dihydroxy-6-((1-hydroxy-4-oxopent-2-en-1-yl)oxy)hept-3-en-2-one unites (cellulose containing di ene units (CCDEUs)). This modified cellulose was characterized by different methods and applied as a copolymer and grafting agent to synthesize an eco-friendly (CCDEUs-g-poly(AA)/urea) superabsorbent with slow-release urea fertilizer. The created double bonds in C2 and C3 positions of ß-d-glucose units increased the linkage between cellulose and acrylic acid, leading to the formation of a strong network for slow-release urea fertilizer. Also, this modification created an expanded network for storage a high amount of water by increasing the cellulose flexibility. The reaction conditions for modification and synthesis of the superabsorbent, the oxidation degree value of glucose units, kinetics models, the effect of different saline solutions, various pH and reswelling time on the water absorbency, water retention capacity, reusability, biodegradability, and slow-release property were investigated. Also, the effect of synthesized CCDEUs-g-poly(AA)/urea on plant growth was tested and excellent results were obtained.


Assuntos
Celulose/química , Fertilizantes/análise , Ureia/análise , Acrilamidas/química , Acrilatos/química , Adsorção , Sulfato de Amônio/química , Difusão , Elementos Químicos , Fabaceae/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Cinética , Oxirredução , Reologia , Sais/química , Solo/química , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Ureia/síntese química , Ureia/química , Água/química
18.
Food Chem ; 362: 130206, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34082289

RESUMO

Legumes are the main sources of folates which are not synthesized in the human body. The five folate species: 5-methyl tetrahydrofolate, tetrahydrofolate, pteroyl glutamate, 5-formyl tetrahydrofolate and 10-formyl tetrahydrofolate were quantitatively determined in legumes seeds and sprouts by a newly developed and validated high performance thin layer chromatography method. High resolution plate imaging hyphenated to mass spectrometry was exploited for fingerprint analysis of tested samples. Results indicated that germination of all seeds resulted in a 2.5-4 fold increase in the content of total folates as well as the individual vitamers. The total amount of folate reached a maximum on the fifth day in the case of black-eyed peas (861 µg/100 g Fresh Weight), white beans (755 µg/100 g FW) and brown lentils (681 µg/100 g FW). 5-CH3-H4 folate was found to be the most dominating folate species reaching its maximum content in day 5 sprouts of black-eyed peas (490 µg/100 g FW).


Assuntos
Cromatografia em Camada Delgada/métodos , Fabaceae/química , Ácido Fólico/análise , Espectrometria de Massas/métodos , Sementes/química , Fabaceae/crescimento & desenvolvimento , Análise de Alimentos/métodos , Análise de Alimentos/estatística & dados numéricos , Germinação , Processamento de Imagem Assistida por Computador , Lens (Planta)/química , Leucovorina/análogos & derivados , Leucovorina/análise , Imagem Molecular/métodos , Análise Multivariada , Reprodutibilidade dos Testes , Sementes/crescimento & desenvolvimento , Tetra-Hidrofolatos/análise
19.
Sci Rep ; 11(1): 12585, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131225

RESUMO

The dry matter partitioning is the product of the flow of assimilates from the source organs (leaves and stems) along the transport route to the storage organs (grains). A 2-year field experiment was conducted at the agronomy research farm of the University of Agriculture Peshawar, Pakistan during 2015-2016 (Y1) to 2016-2017 (Y2) having semiarid climate. Four summer crops, pearl millet (Pennisetum typhoidum L.), sorghum (Sorghum bicolor L.) and mungbean (Vigna radiata L.) and pigeonpea (Cajanus cajan L.) and four winter crops, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), fababean (Vicia faba) and rapeseed (Brassica napus) were grown under two irrigation regimes (full vs. limited irrigation) with the pattern of growing each crop either alone as sole crop or in combination of two crops in each intercropping system under both winter and summer seasons. The result showed that under full irrigated condition (no water stress), all crops had higher crop growth rate (CGR), leaf dry weight (LDW), stem dry weight (SDW), and spike/head dry weight (S/H/PDW) at both anthesis and physiological maturity (PM) than limited irrigated condition (water stress). In winter crops, both wheat and barley grown as sole crop or intercropped with fababean produced maximum CGR, LDW, SDW, S/H/PDW than other intercrops. Among summer crops, sorghum intercropped either with pigeon pea or with mungbean produced maximum CGR, LDW, SDW, and S/H/PDW at both growth stages. Sole mungbean and pigeon pea or pigeon pea and mungbean intercropping had higher CGR, LDW, SDW, S/H/PDW than millet and sorghum intercropping. On the other hand, wheat and barley grown as sole crops or intercropped with fababean produced maximum CGR, LDW, SDW, and S/H/PDW than other intercrops. Fababean grown as sole crop or intercropped with wheat produced higher CGR, LDW, SDW, and S/H/PDW at PM than intercropped with barley or rapeseed. From the results it was concluded that cereal plus legume intercropping particularly wheat/fababean in winter and sorghum/pigeon pea or sorgum/mungbean in summer are the most productive intercropping systems under both low and high moisture regimes.


Assuntos
Irrigação Agrícola , Produção Agrícola , Produtos Agrícolas , Grão Comestível/crescimento & desenvolvimento , Agricultura , Grão Comestível/metabolismo , Fabaceae/crescimento & desenvolvimento , Fabaceae/metabolismo , Humanos , Nitrogênio/metabolismo , Fósforo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Estações do Ano , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Vicia faba/crescimento & desenvolvimento , Vicia faba/metabolismo
20.
Gene ; 791: 145722, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34010708

RESUMO

Plant height is a fundamentally crucial agronomic trait to control crop growth and high yield cultivation. Several studies have been conducted on the understanding ofmolecular genetic bases of plant height in model plants and crops. However, the molecular mechanism underlying peanut plant height development is stilluncertain. In the present study, we created a peanut mutant library by fast neutron irradiation using peanut variety SH13 and identified a semi-dwarf mutant 1 (sdm1). At 84 DAP (days after planting), the main stem of sdm1 was only about 62% of SH13. The internode length of sdm1 hydroponic seedlings was found significantly shorter than that of SH13 at 14 DAP. In addition, the foliar spraying of exogenous IAA could partially restore the semi-dwarf phenotype of sdm1. Transcriptome data indicated that the differentially expressed genes (DEGs) between sdm1 and SH13 significantly enriched in diterpenoid biosynthesis, alpha-linolenic acid metabolism, brassinosteroid biosynthesis, tryptophan metabolism and plant hormone signal transduction. The expression trend of most of the genes involved in IAA and JA pathway showed significantly down- and up- regulation, which may be one of the key factors of the sdm1 semi-dwarf phenotype. Moreover, several transcription factorsand cell wall relatedgenes were expressed differentially between sdm1 and SH13. Conclusively, this research work not only provided important clues to unveil the molecular mechanism of peanut plant height regulation, but also presented basic materials for breeding peanut cultivars with ideal plant height.


Assuntos
Arachis/crescimento & desenvolvimento , Arachis/genética , Regulação da Expressão Gênica de Plantas/genética , Biometria/métodos , Fabaceae/genética , Fabaceae/crescimento & desenvolvimento , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Fenótipo , Melhoramento Vegetal/métodos , Reguladores de Crescimento de Plantas/metabolismo , RNA-Seq/métodos , Plântula/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...